

Perceptual Loss, GANs (part I) Jun-Yan Zhu

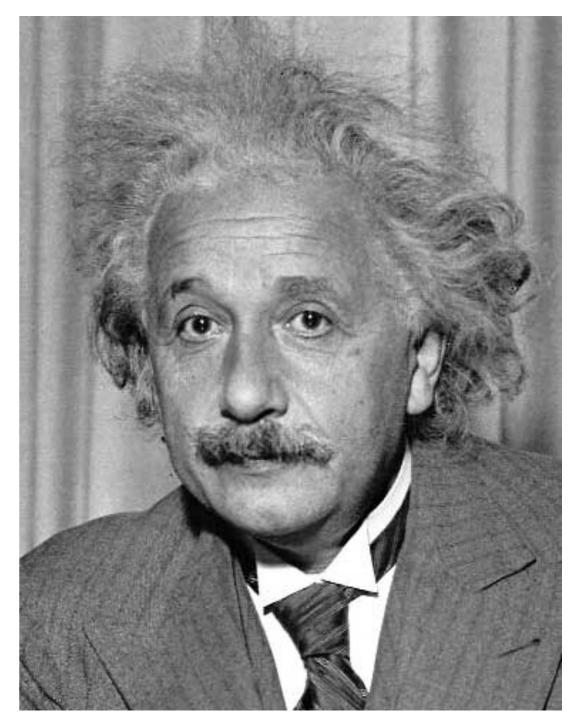
16-726 Learning-based Image Synthesis, Spring 2021

many slides from Phillip Isola, Richard Zhang, Alyosha Efros

HW1 (hints)

Template matching

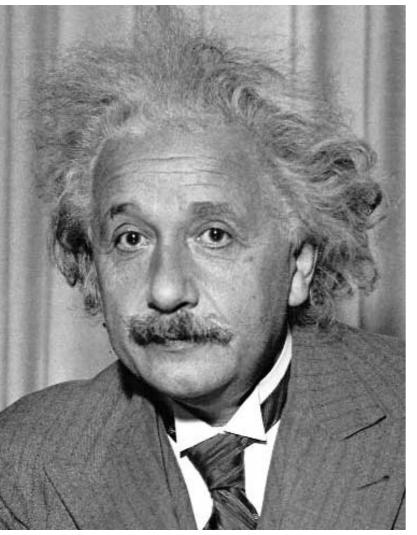
- Goal: find sin image
- Main challenge: What is a good similarity or distance measure between two patches?
 - Correlation
 - Zero-mean correlation
 - Sum Square Difference
 - Normalized Cross Correlation



- Goal: find in image
- Method 0: filter the image with eye patch

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$f = imagenerical for the second s$$



f = image g = filter

What went wrong?

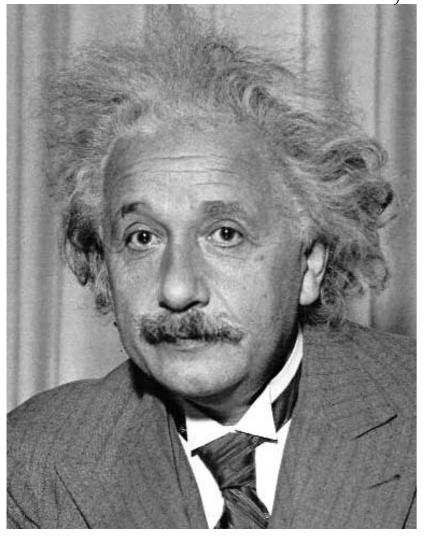
Input

Filtered Image

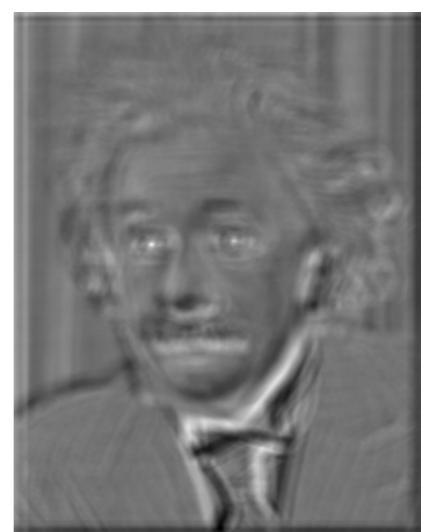
Side by Derek Hoiem

- Goal: find in image
- Method 1: filter the image with zero-mean eye

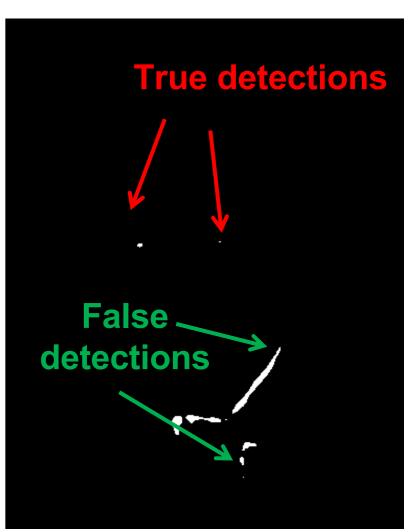
$$h[m,n] = \sum_{k,l} (f[k,l] - \bar{f}) \underbrace{(g[m+k,n+l])}_{\text{mean of f}} \qquad \begin{array}{c} \text{f = image} \\ \text{g = filter} \end{array}$$



Input



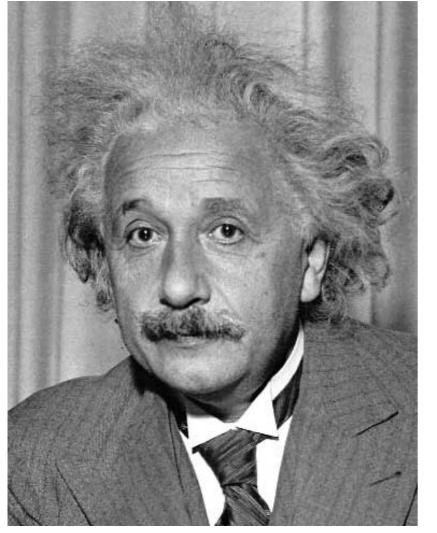
Filtered Image (scaled)



Thresholded Image

- Goal: find in image
- Method 2: SSD (Sum Square Difference)

$$h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2 \qquad \text{f = image} \\ g = \text{filter}$$





Input

1-sqrt(SSD)

Thresholded Image

$$h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2 \quad f = \text{image}$$

g = filter

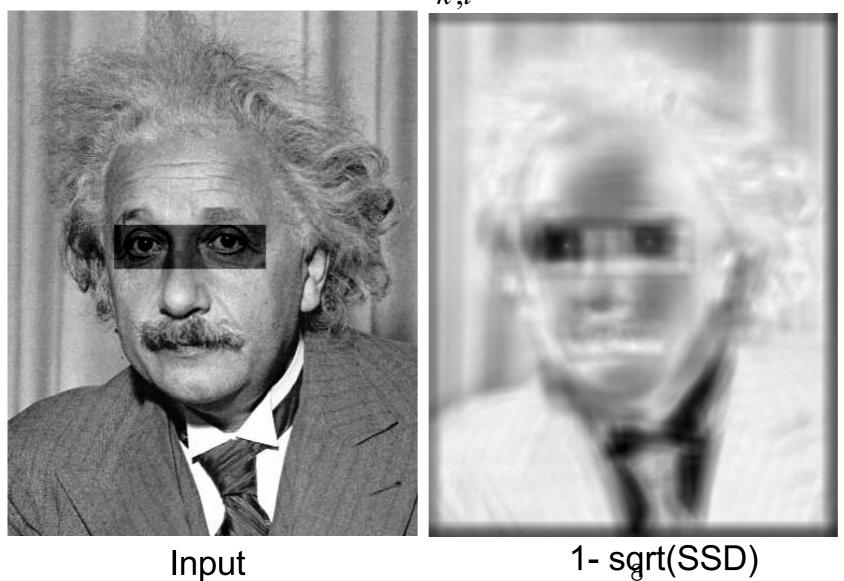
Can SSD be implemented with linear filters?

• Goal: find in image

What's the potential downside of SSD?

• Method 2: SSD (Sum Square Difference)

$$h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2 \qquad \text{f = image} \\ g = \text{filter}$$



- Goal: find sin image
- Method 2: Normalized Cross-Correlation g = filter

$$h[m,n] = \frac{\sum_{k,l} (g[k,l] - \overline{g})(f[m+k,n+l] - \overline{f}_{m,n})}{\left(\sum_{k,l} (g[k,l] - \overline{g})^2 \sum_{k,l} (f[m+k,n+l] - \overline{f}_{m,n})^2\right)^{0.5}}$$

- Goal: find in image
- Method 2: Normalized Cross-Correlation

Input

Normalized_@X-Correlation

Thresholded Image

- Goal: find in image
- Method 2: Normalized Cross-Correlation

Input

Normalized X-Correlation

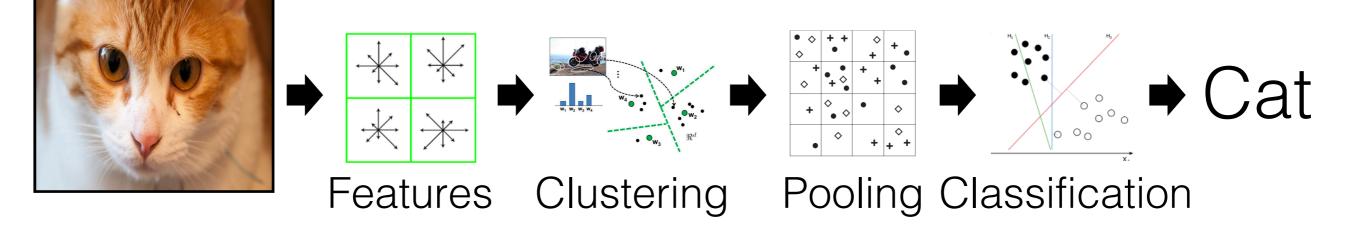
Thresholded Image

Q: What is the best method to use?

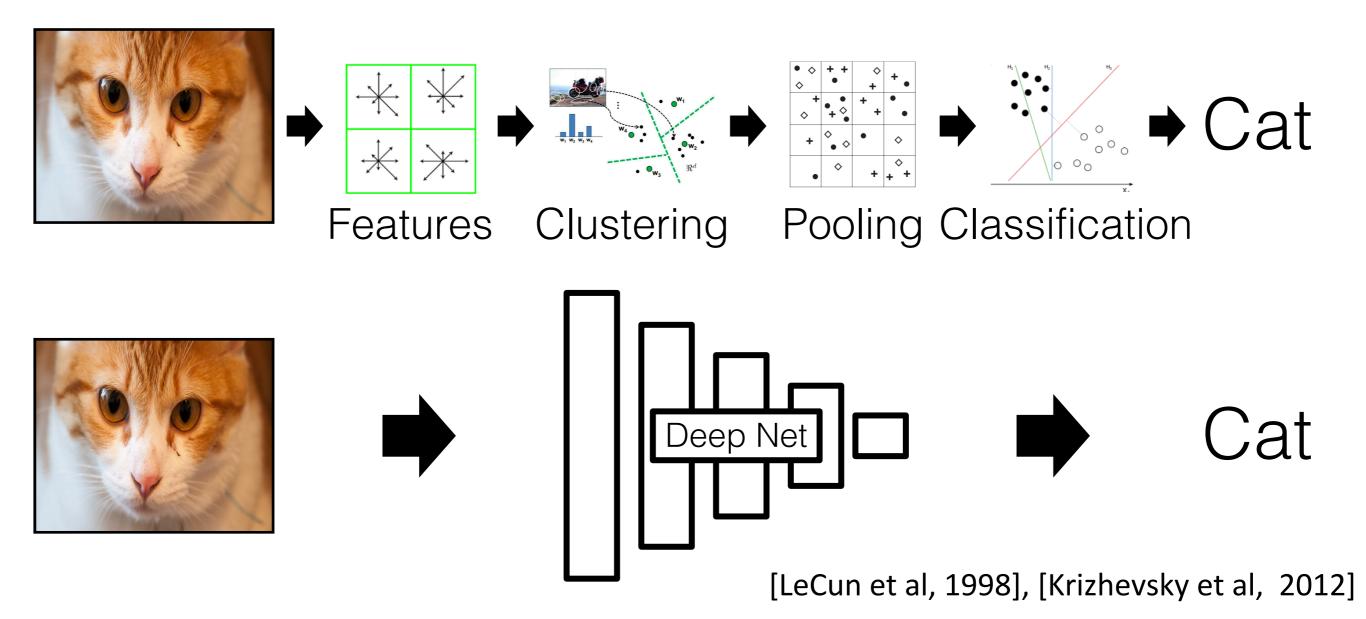
- Answer: Depends
- Zero-mean filter: fastest but not a great matcher
- SSD: next fastest, sensitive to overall intensity
- Normalized cross-correlation: slowest, invariant to local average intensity and contrast

Review (CNN for Image Synthesis)

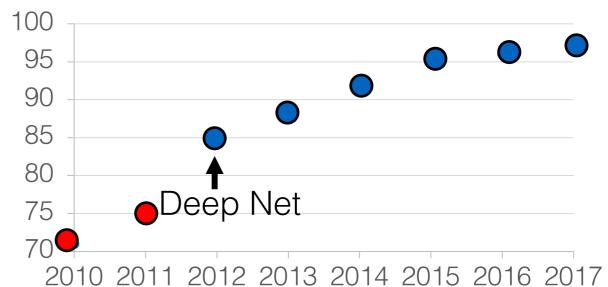
Computer Vision before 2012



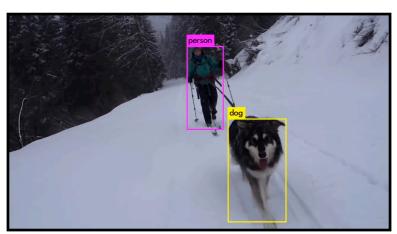
Computer Vision Now



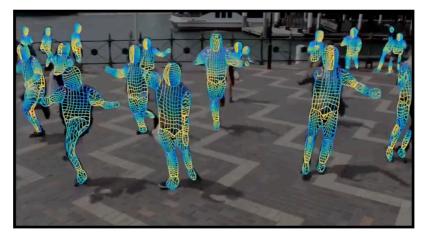
Deep Learning for Computer Vision



Top 5 accuracy on ImageNet benchmark



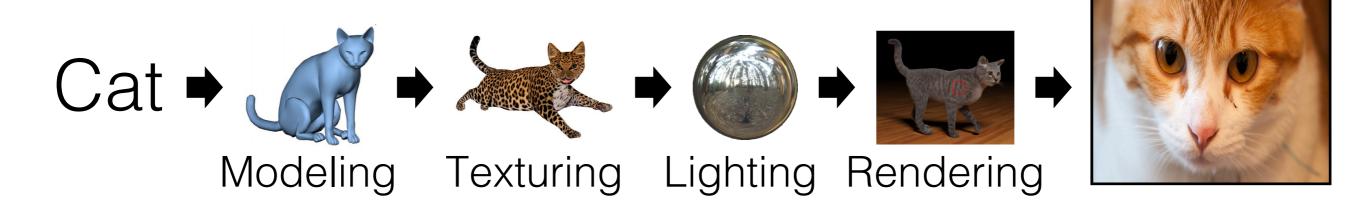
[Redmon et al., 2018] Object detection



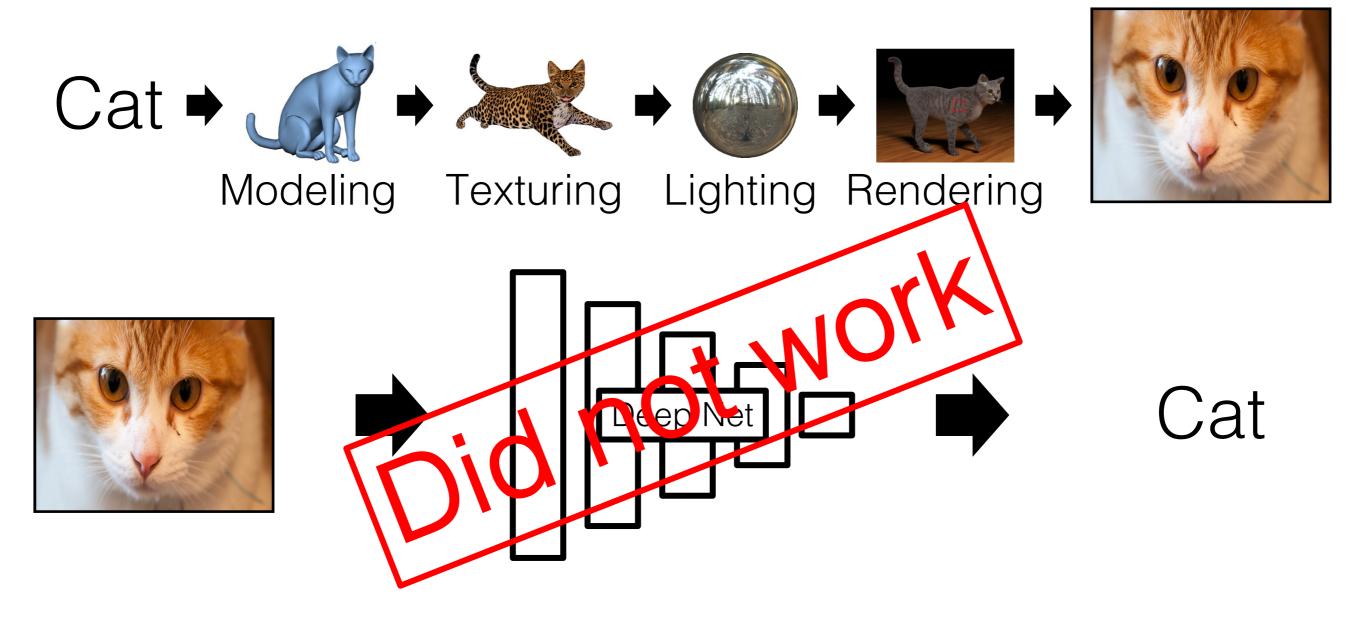
[Güler et al., 2018] Human understanding

[Zhao et al., 2017] Autonomous driving

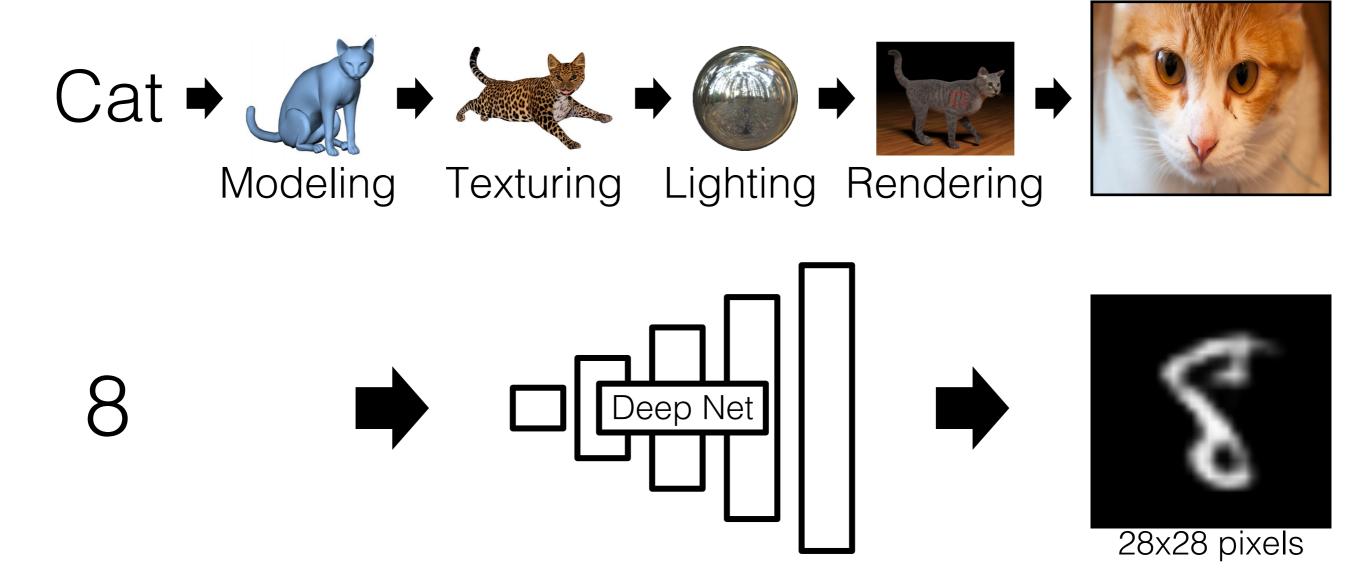
Can Deep Learning Help Graphics?



Can Deep Learning Help Graphics?



Generating images is hard!



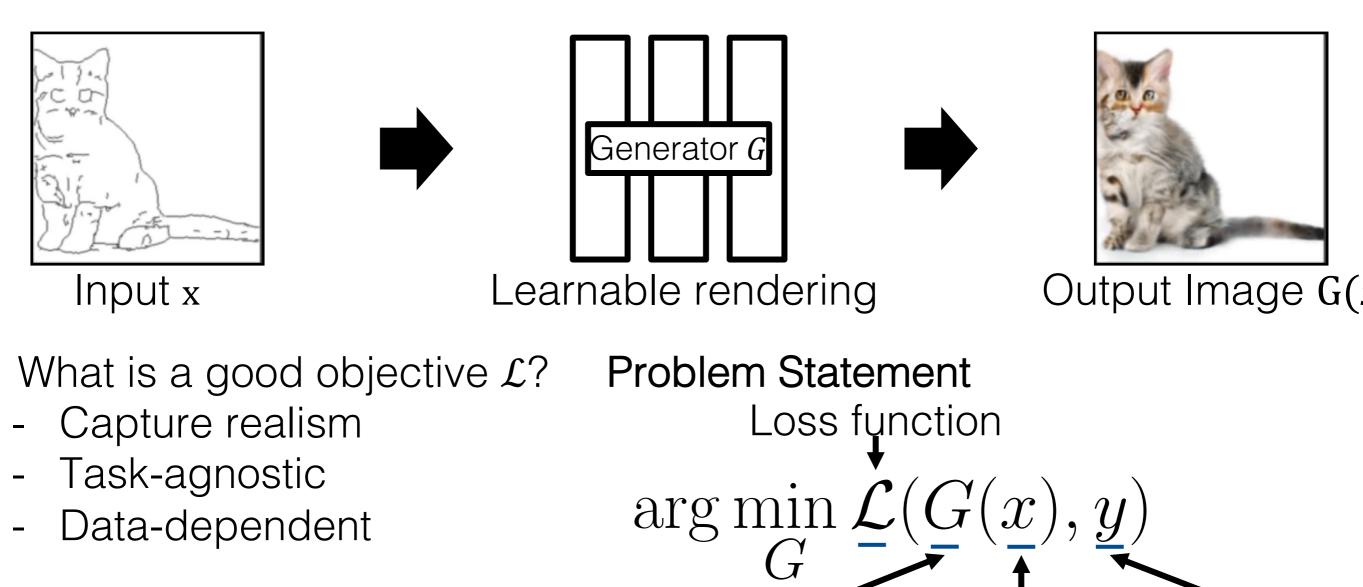
Simple L2 regression doesn't work ☺

Input

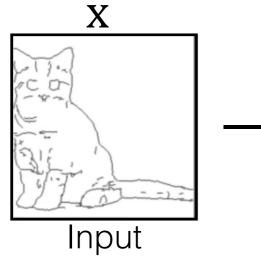
Output

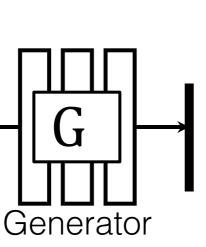
Ground truth

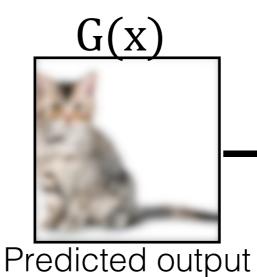
Loss functions for Image Synthesis

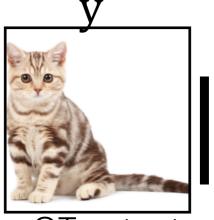


Designing Loss Functions









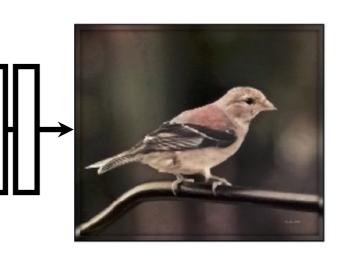
GT output

L2 regression

$$\arg\min_{G} \mathbb{E}_{(x,y)}[||G(x) - y||]$$

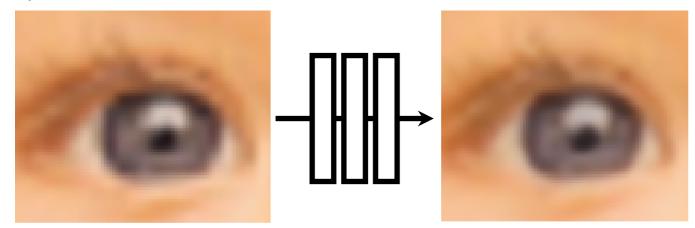
Designing Loss Functions

Image colorization



L2 regression

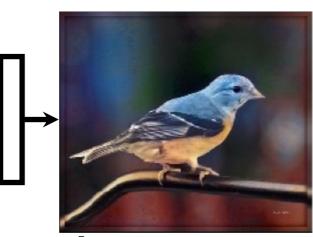
Super-resolution



L2 regression

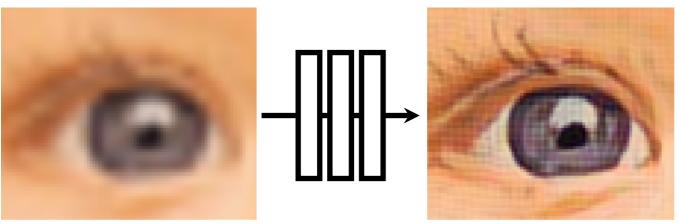
Designing Loss Functions

Image colorization



<u>Classification Loss:</u> Cross entropy objective, with colorfulness term

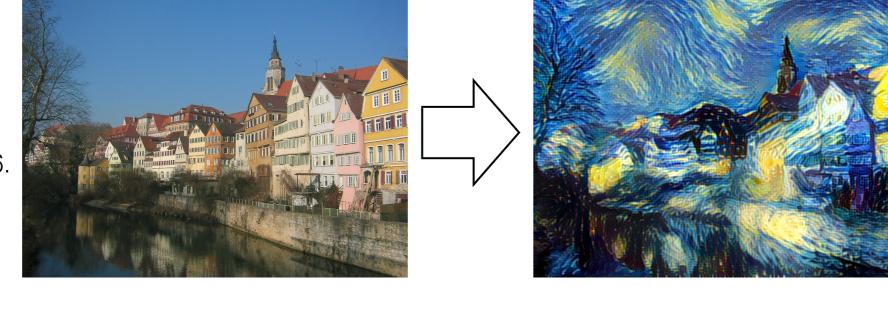
[Zhang et al. 2016] Super-resolution



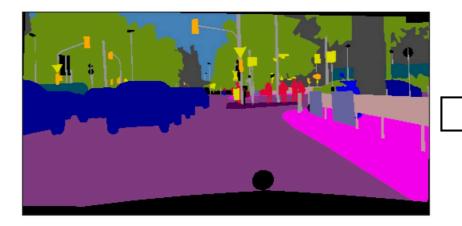
[Gatys et al., 2016], [Johnson et al. 2016] [Dosovitskiy and Brox. 2016] <u>Feature/Perceptual loss</u> Deep feature covariance matching objective

"Perceptual Loss"

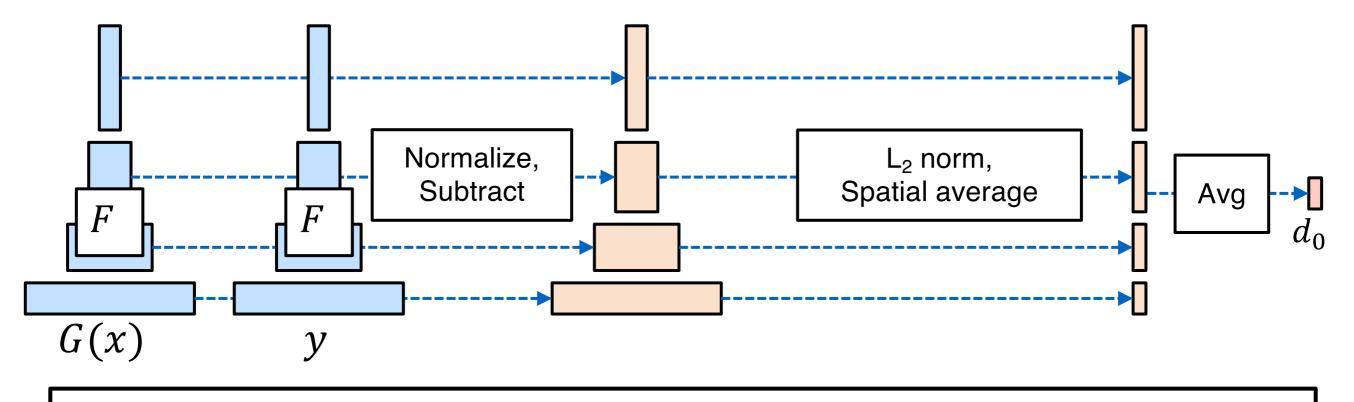
Gatys et al. In CVPR, 2016. Johnson et al. In ECCV, 2016. Dosovitskiy and Brox. In NIPS, 2016.



Chen and Koltun. In ICCV, 2017.



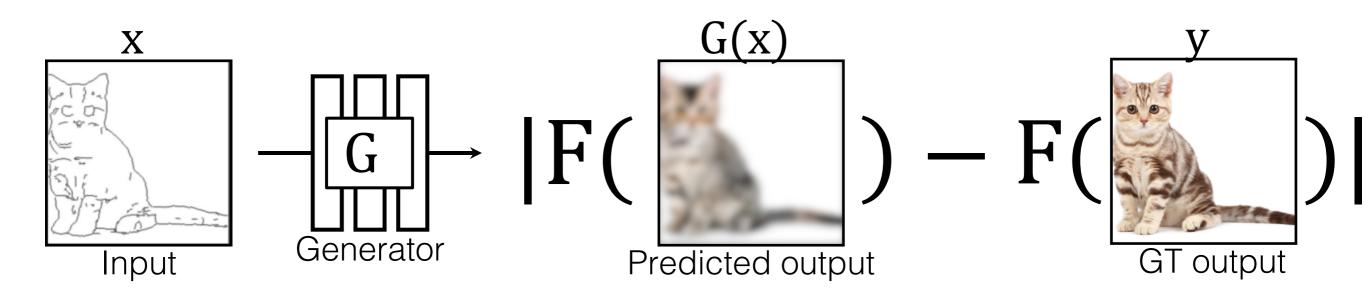
CNNs as a Perceptual Metric



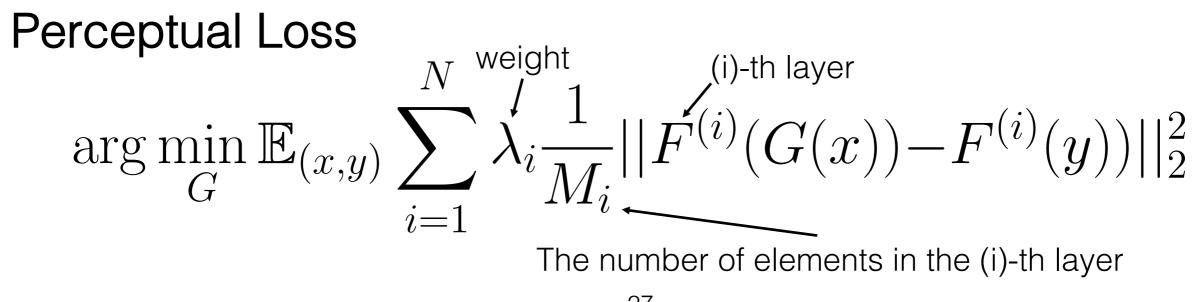
(1) How well do "perceptual losses" describe perception?

c.f. Gatys et al. CVPR 2016. Johnson et al. ECCV 2016. Dosovitskiy and Brox. NIPS 2016.

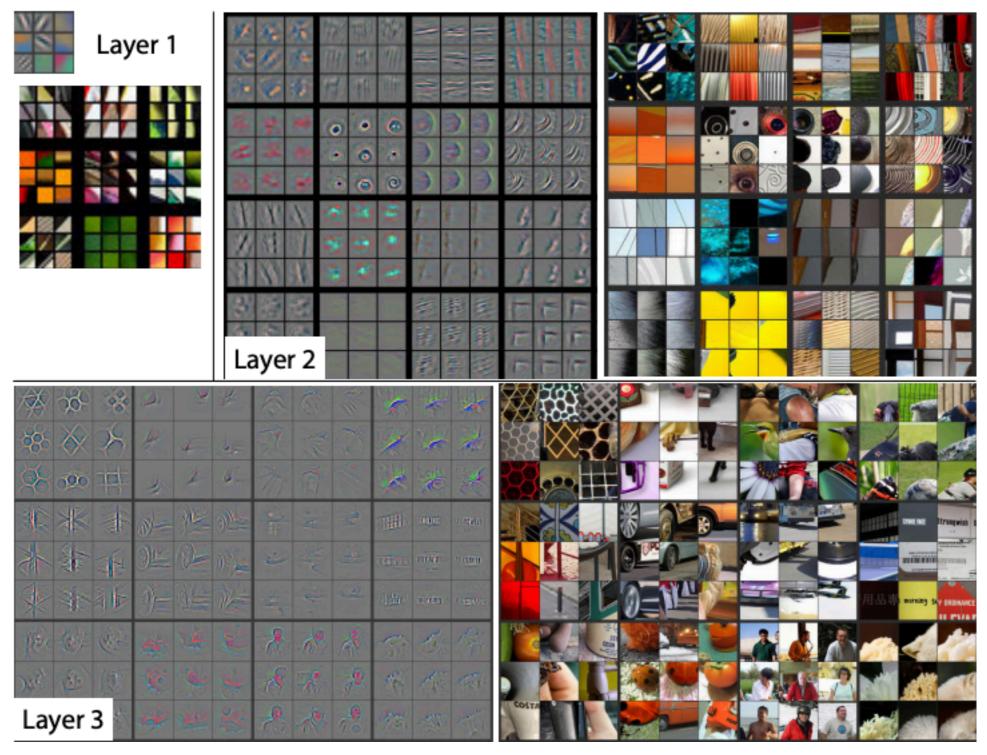
CNNs as a Perceptual Metric



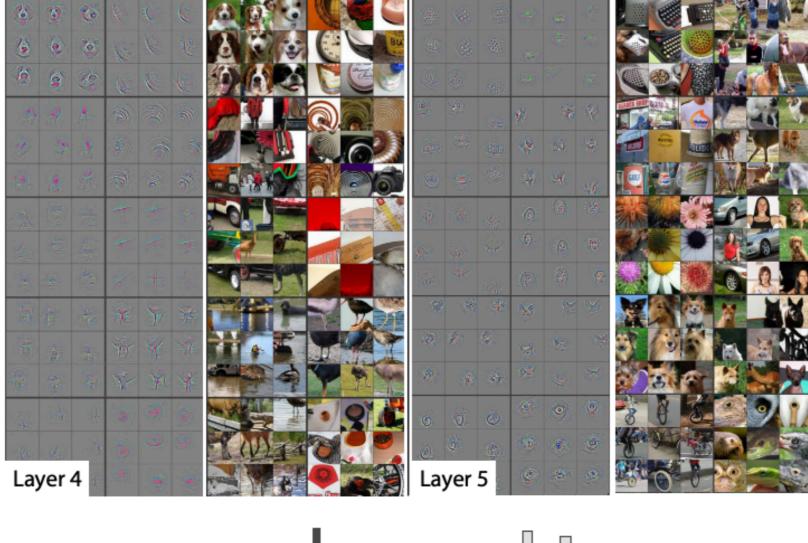
F is a deep network (e.g., ImageNet classifier)

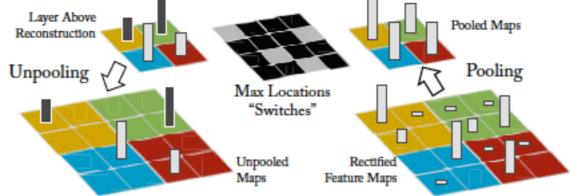


What has a CNN Learned?



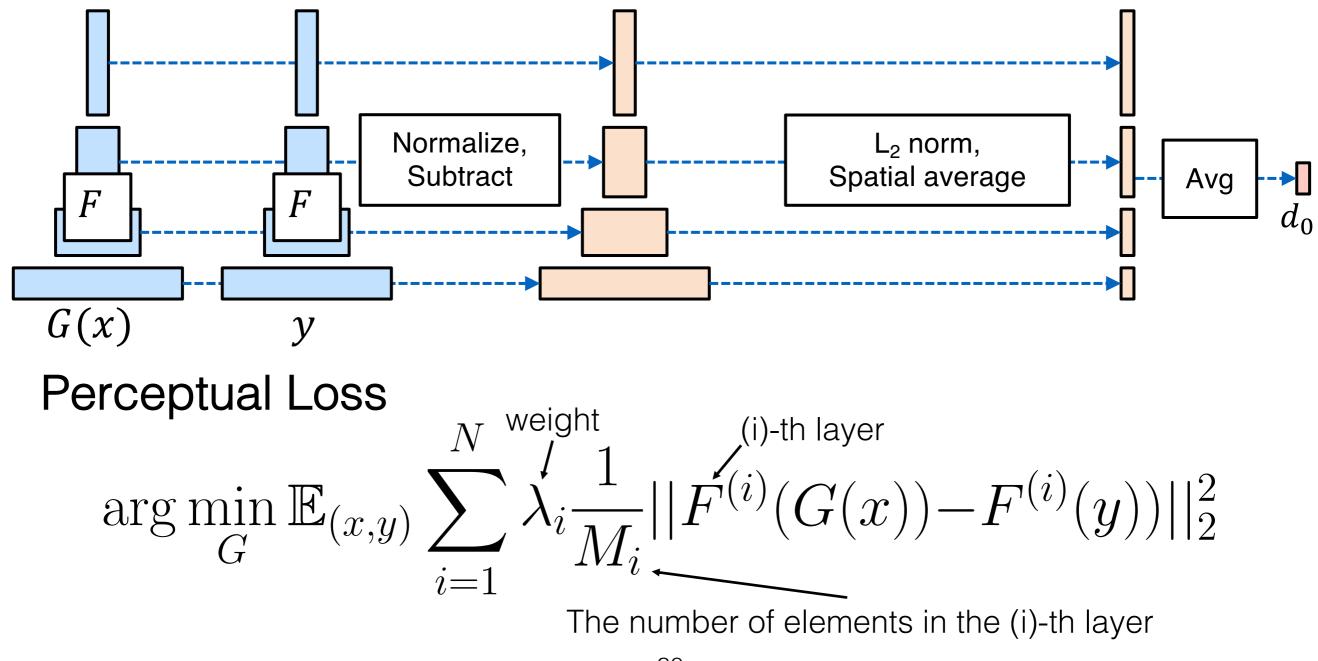
What has a CNN Learned?





Zeiler and Fergus. In ECCV, 2014.

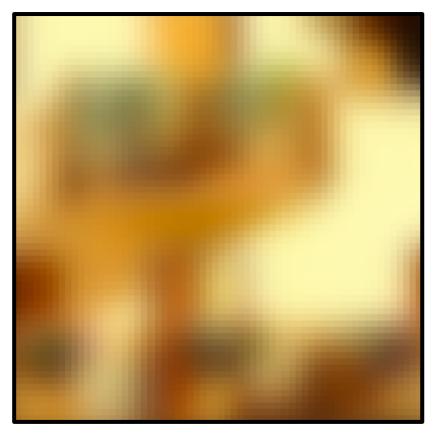
CNNs as a Perceptual Metric



How Different are these Patches?

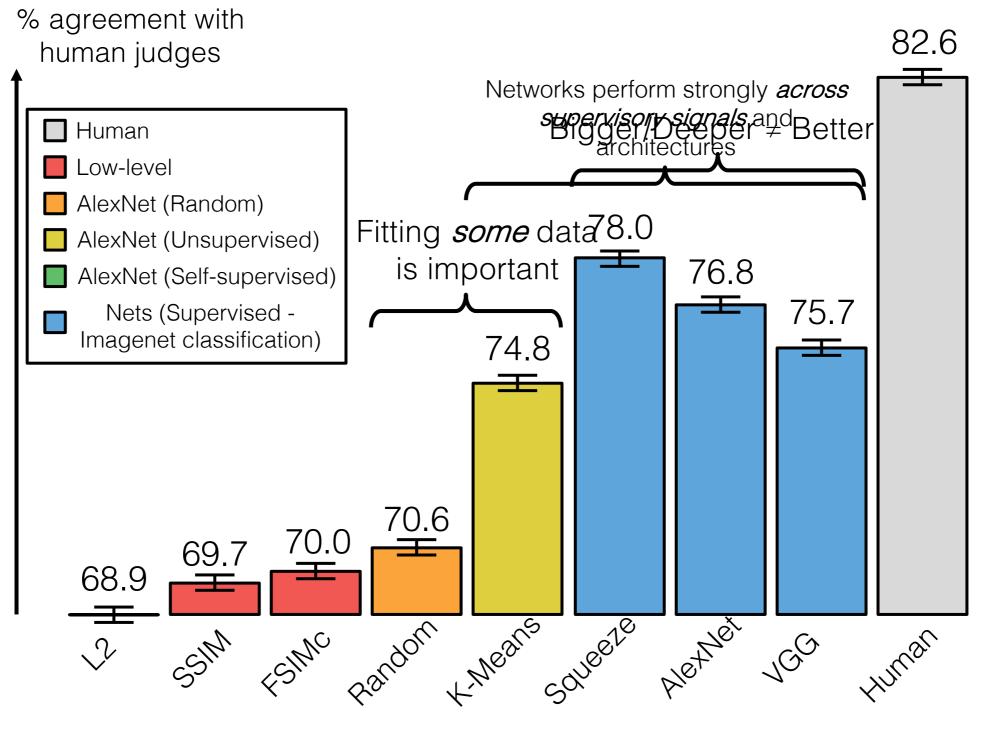
Zhang, Isola, Efros, Shechtman, Wang. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In CVPR, 2018.

Which patch is more similar to the middle?

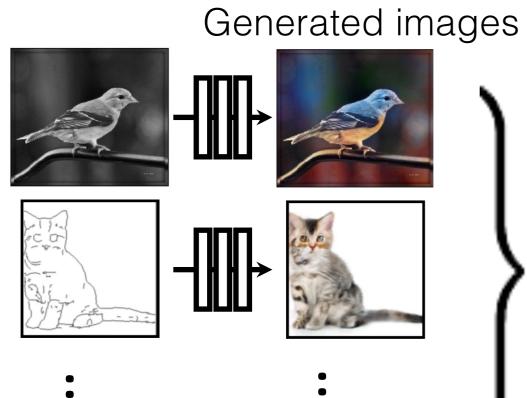


< Type 1 >

Humans L2/PSNR SSIM/FSIMc *Deep Networks?*



VGG ("perceptual loss") correlates well

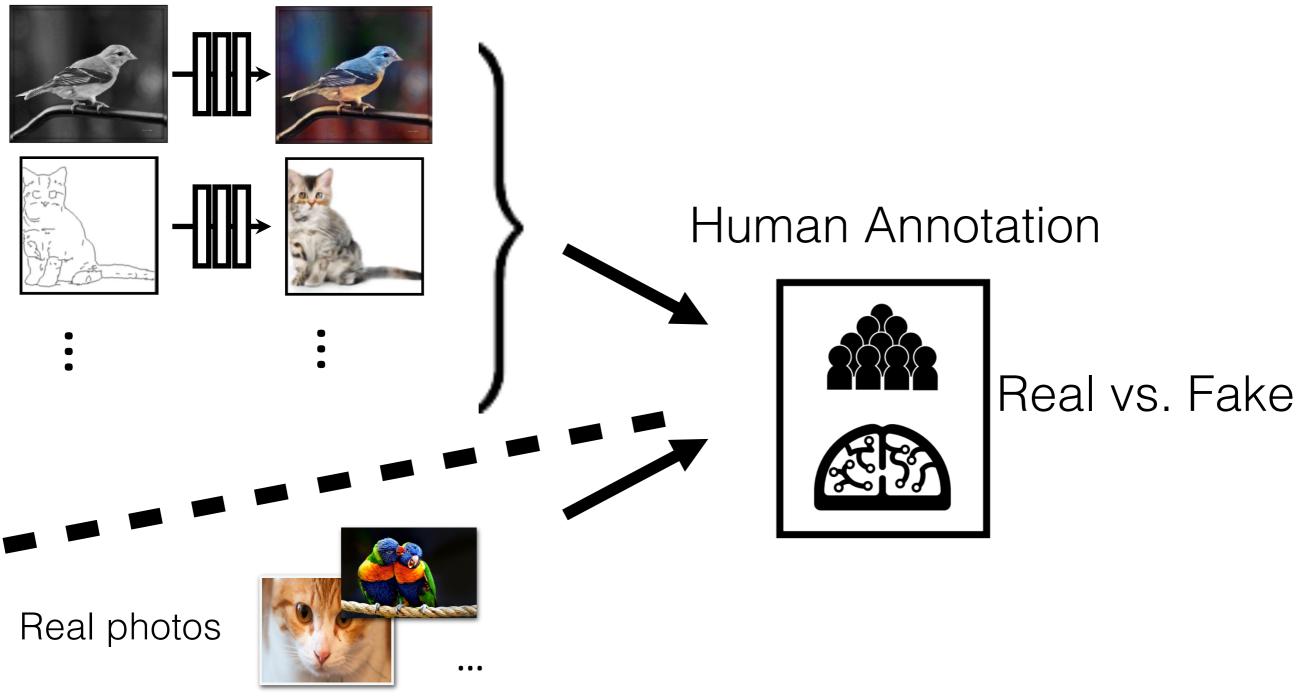


•

Universal loss?

Learning with Human Perception

Generated images



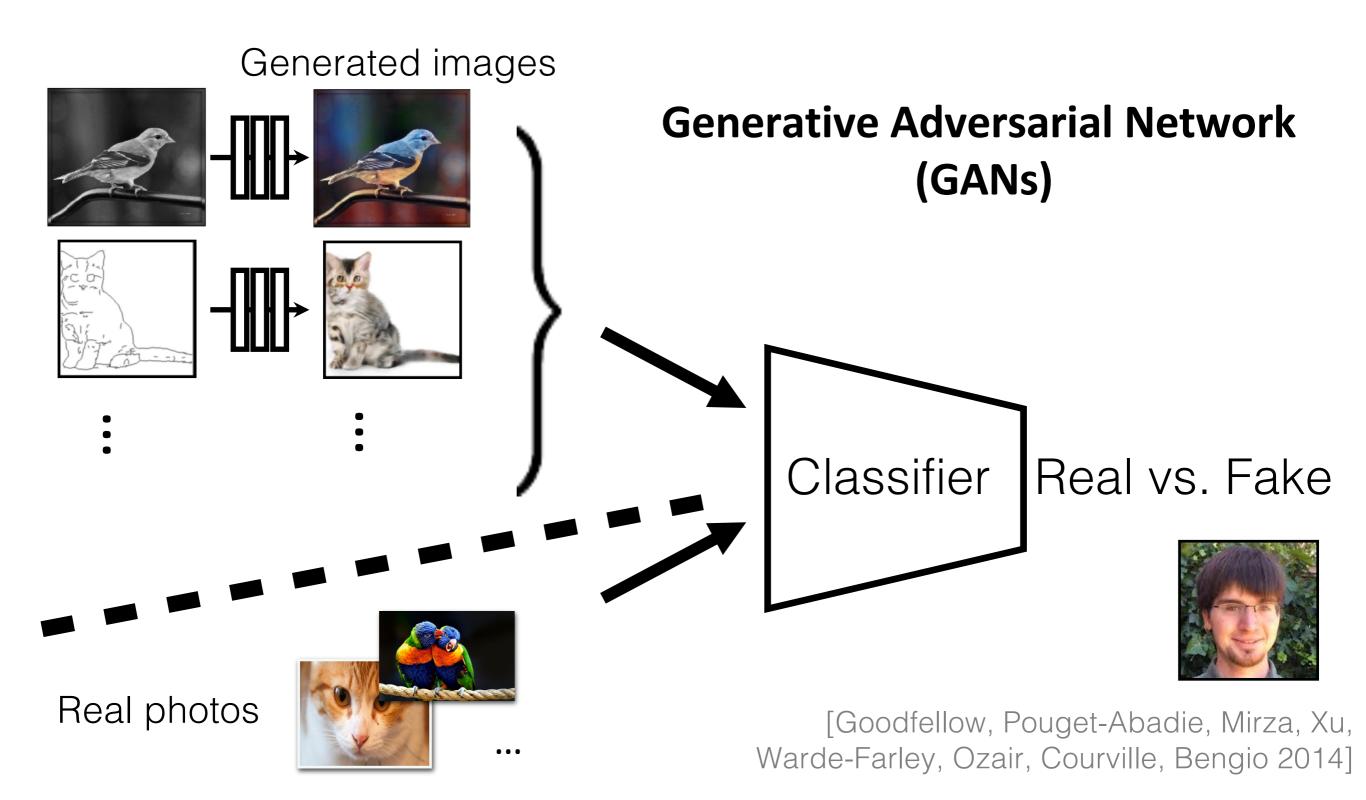
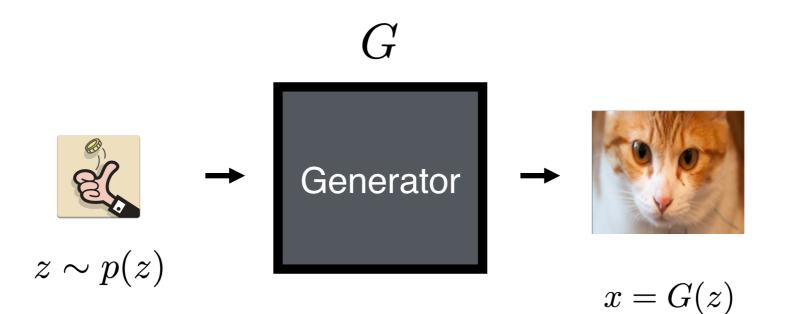
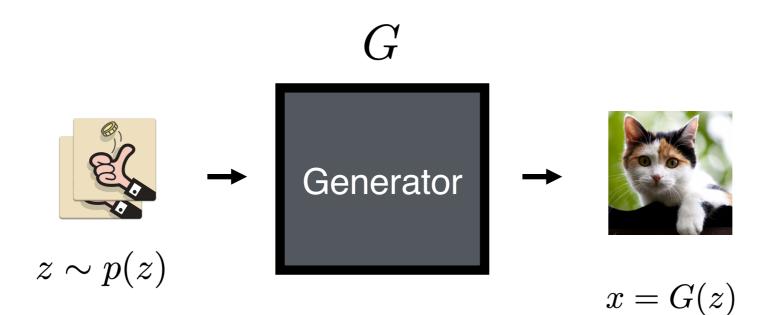


Image synthesis from "noise"



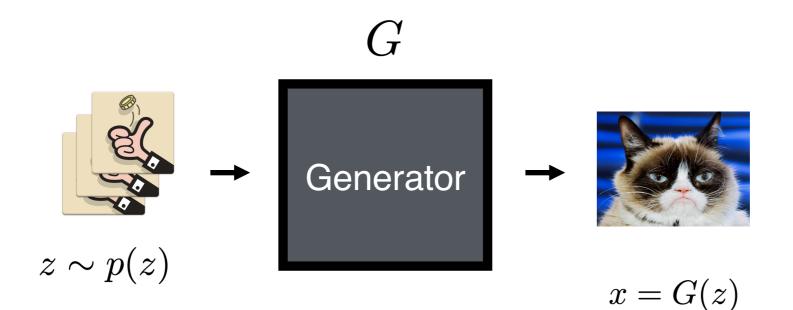
Sampler $G: \mathcal{Z} \to \mathcal{X}$ $z \sim p(z)$ x = G(z)

Image synthesis from "noise"



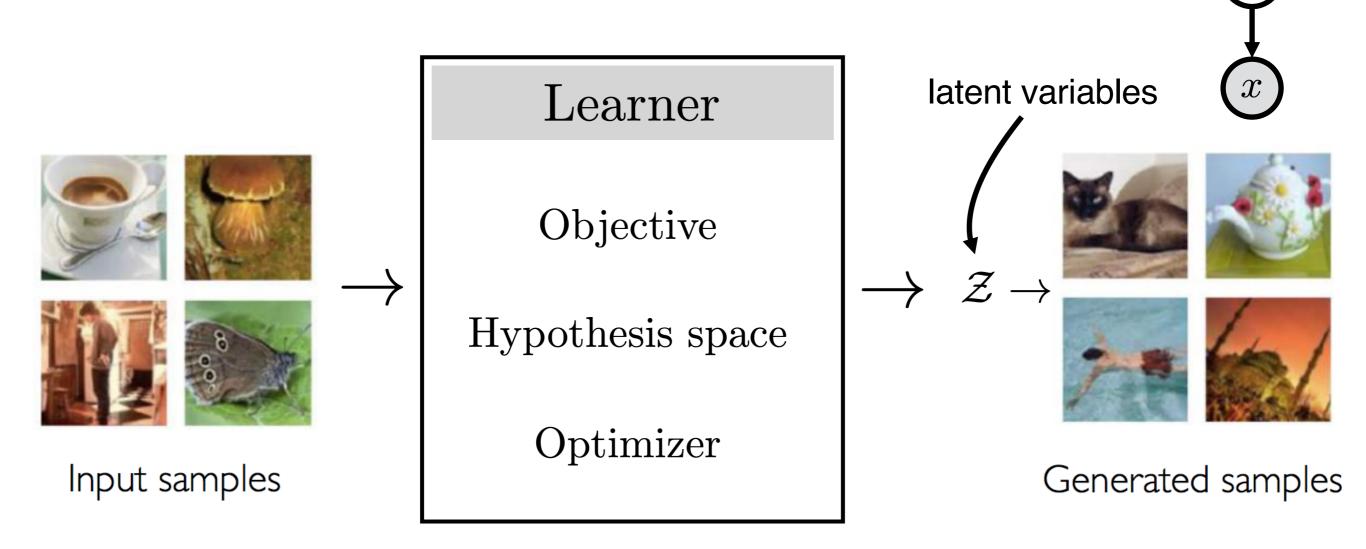
Sampler $G: \mathcal{Z} \to \mathcal{X}$ $z \sim p(z)$ x = G(z)

Image synthesis from "noise"

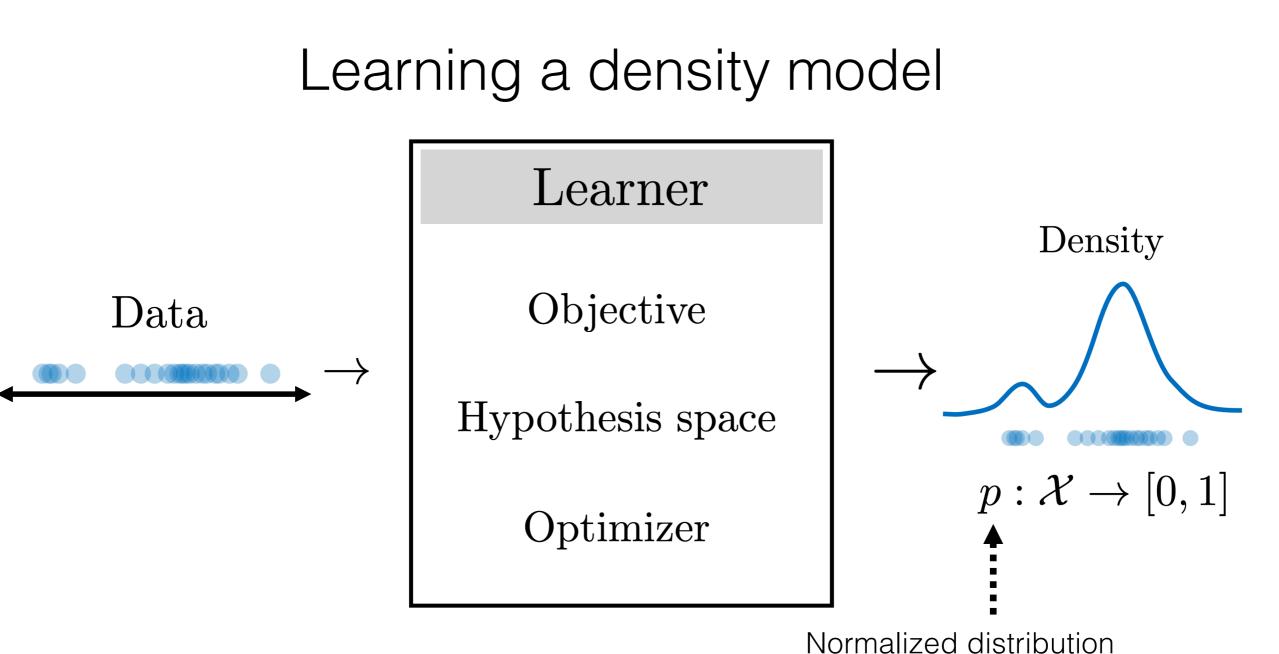


Sampler $G: \mathcal{Z} \to \mathcal{X}$ $z \sim p(z)$ x = G(z)

Learning a generative model



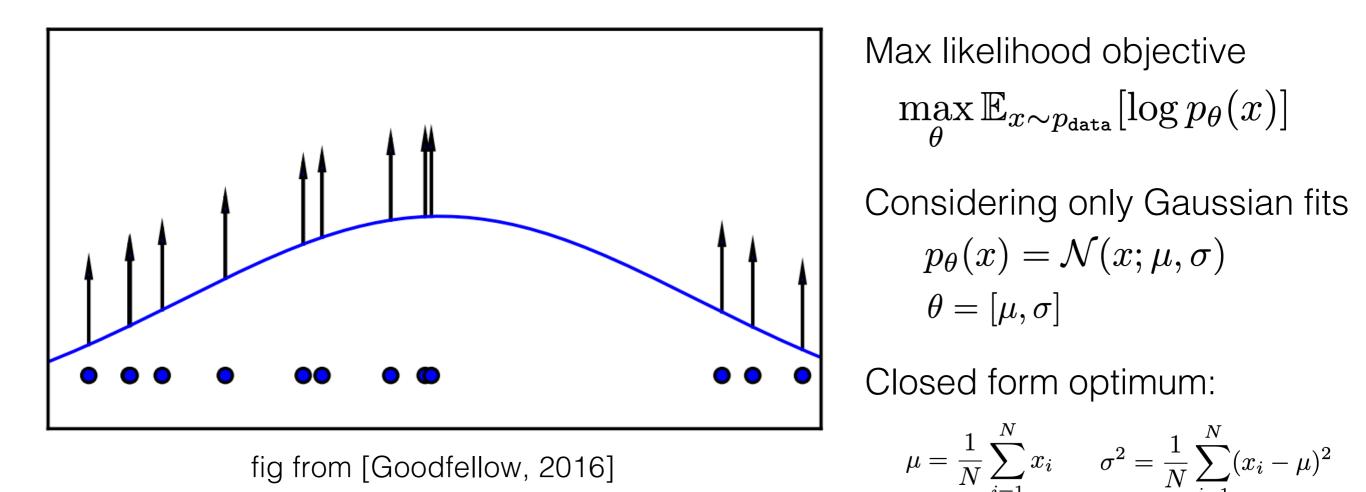
[figs modified from: http://introtodeeplearning.com/materials/2019_6S191_L4.pdf]



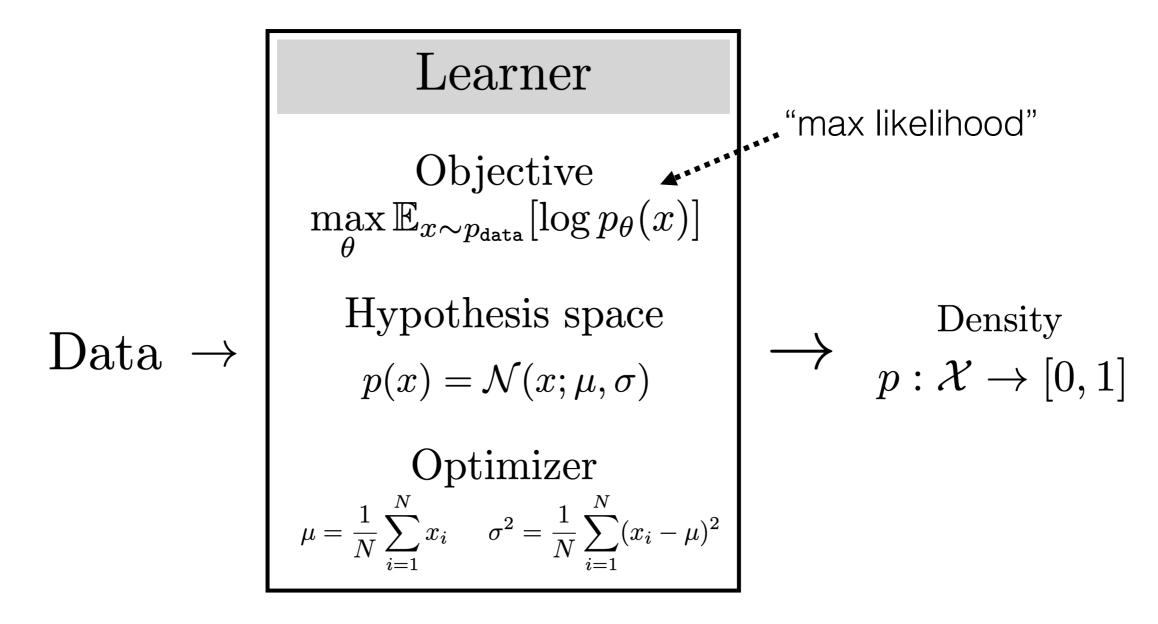
(some models output unormalized distribution)

[figs modified from: http://introtodeeplearning.com/materials/2019_6S191_L4.pdf]

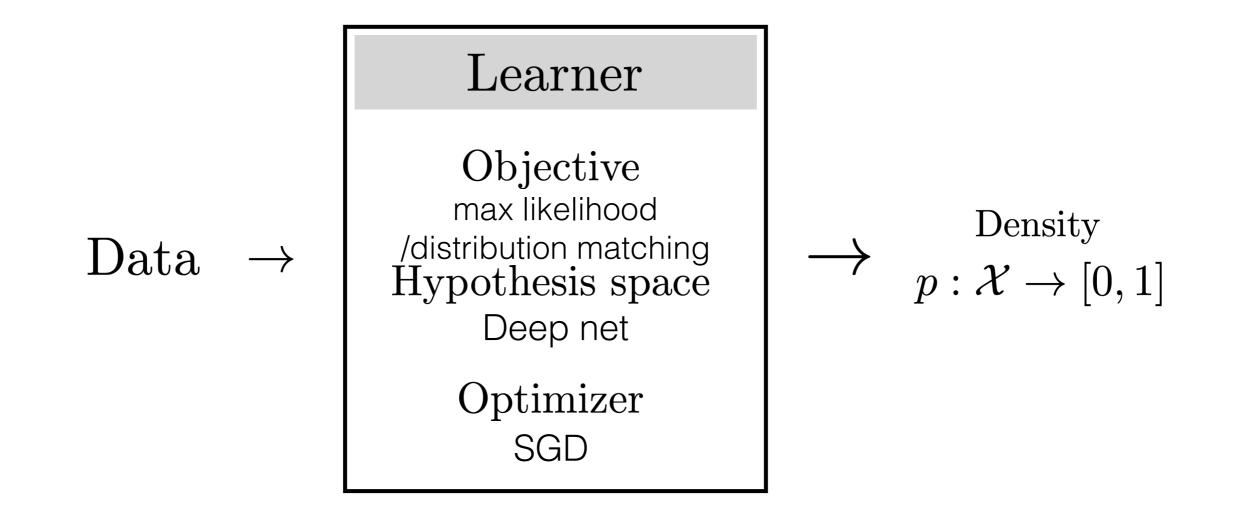
Case study #1: Fitting a Gaussian to data



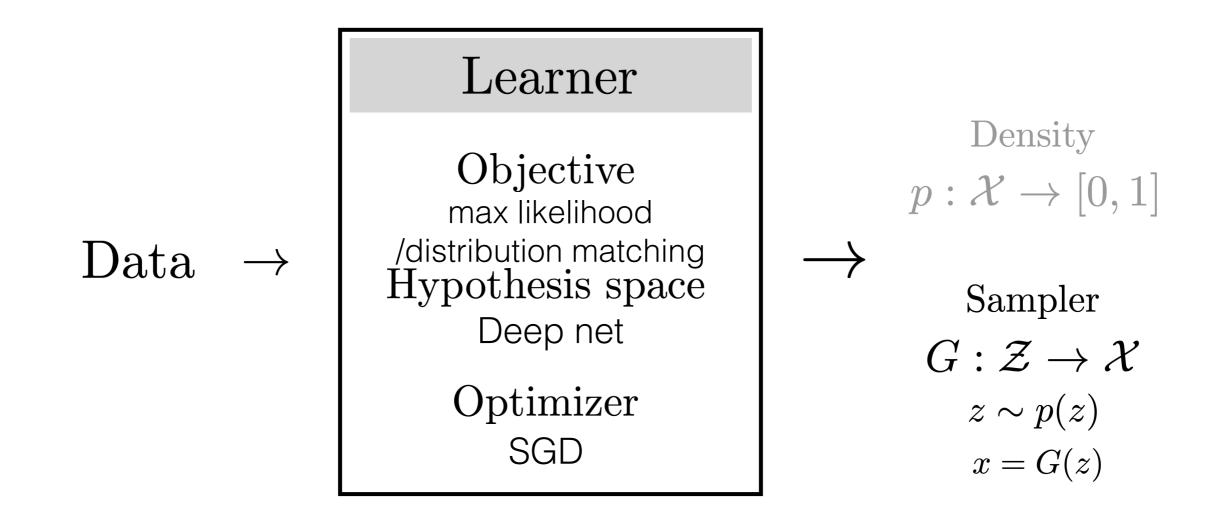
Case study #1: Fitting a Gaussian to data



Case study #2: learning a deep generative model

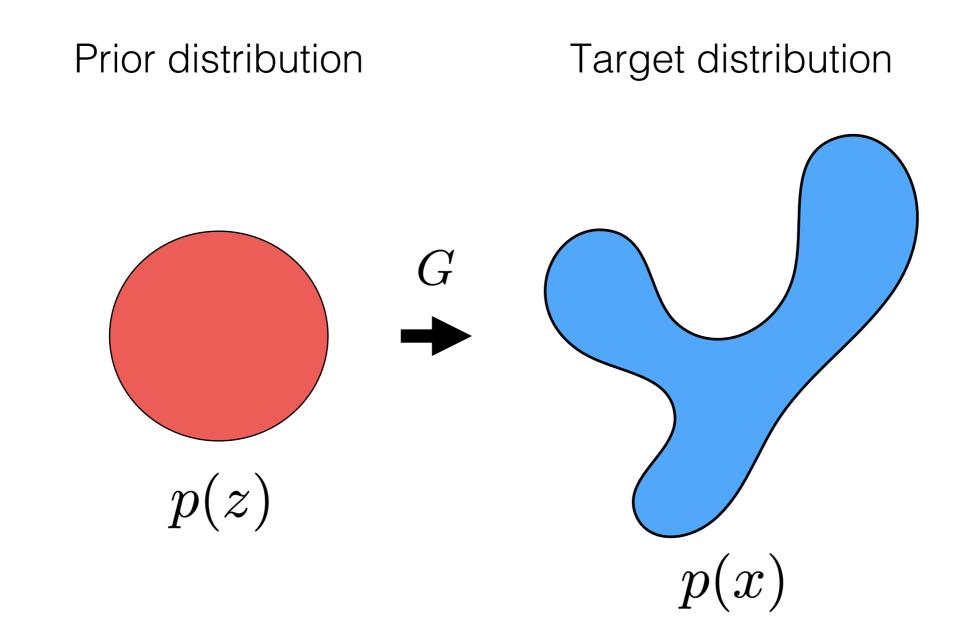


Case study #2: learning a deep generative model

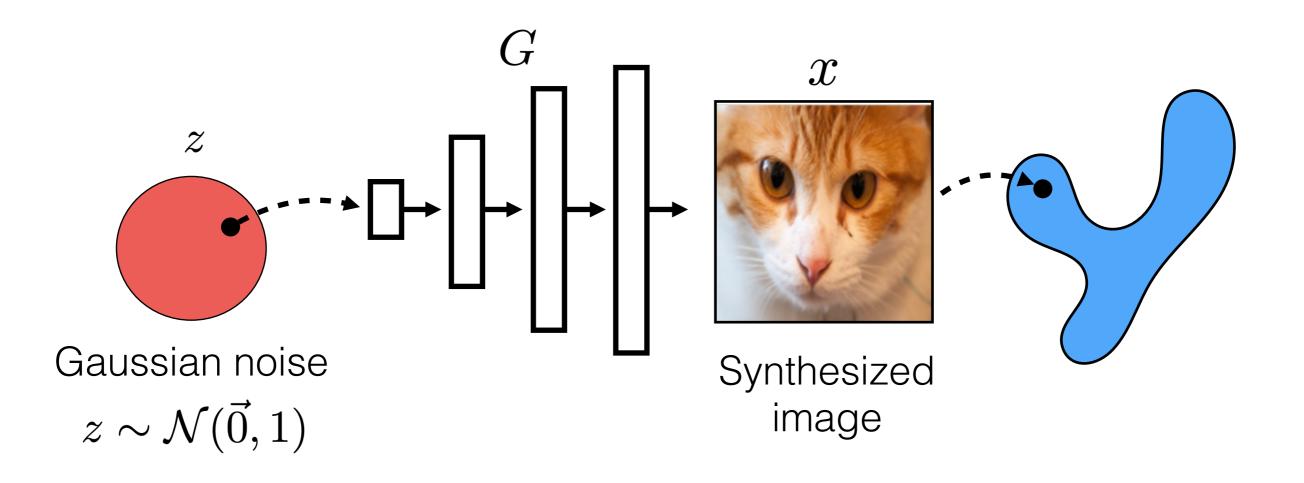


Models that provide a sampler but no density are called **implicit generative models**

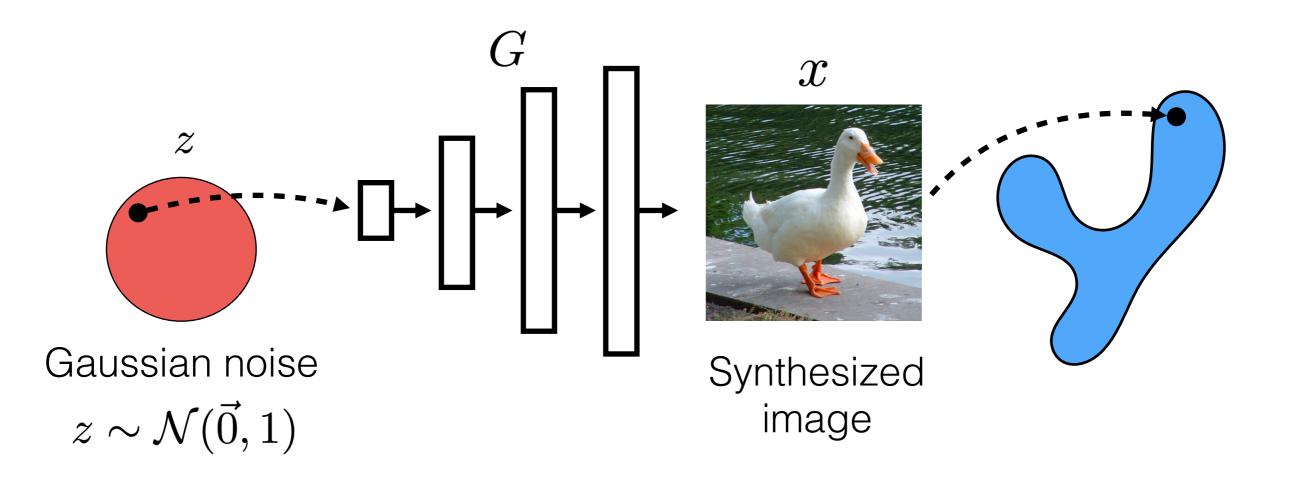
Deep generative models are distribution transformers



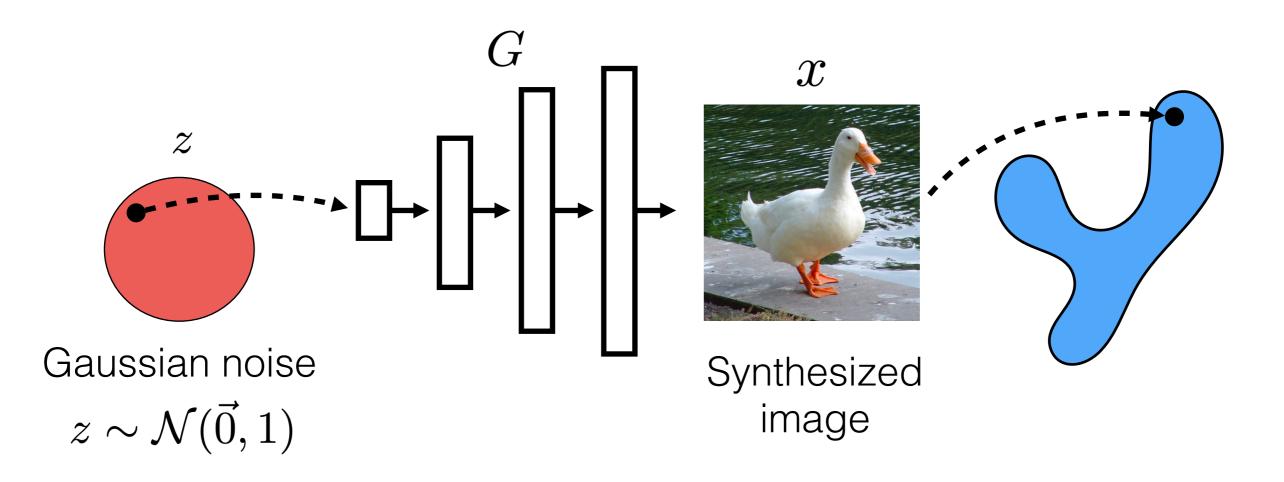
Deep generative models are distribution transformers

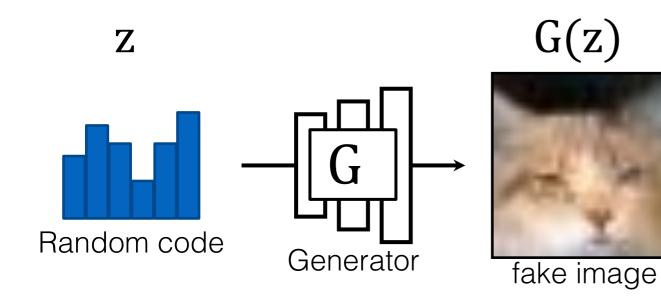


Deep generative models are distribution transformers

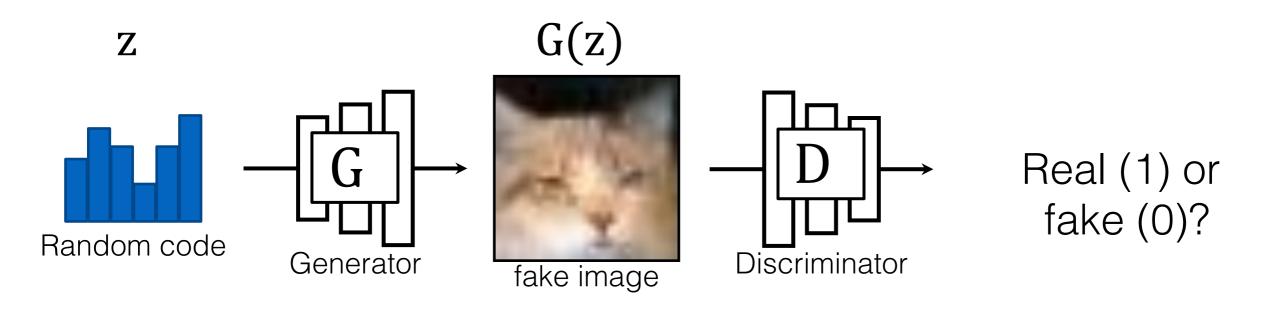


Generative Adversarial Networks (GANs)



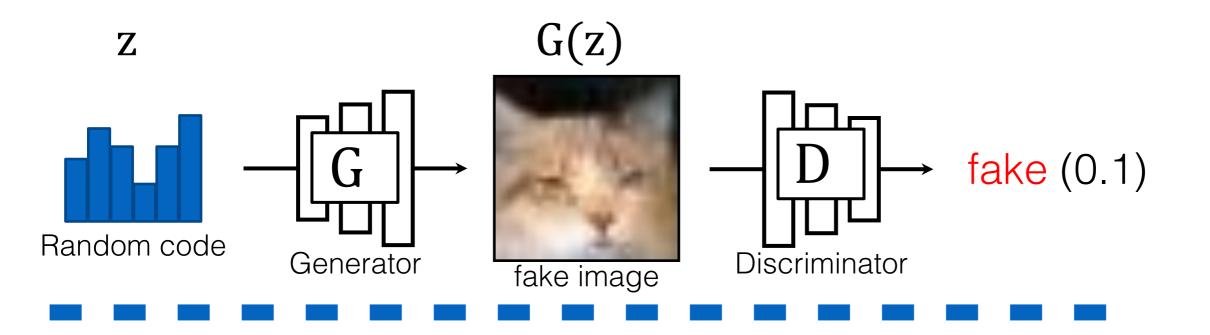


[Goodfellow et al. 2014]



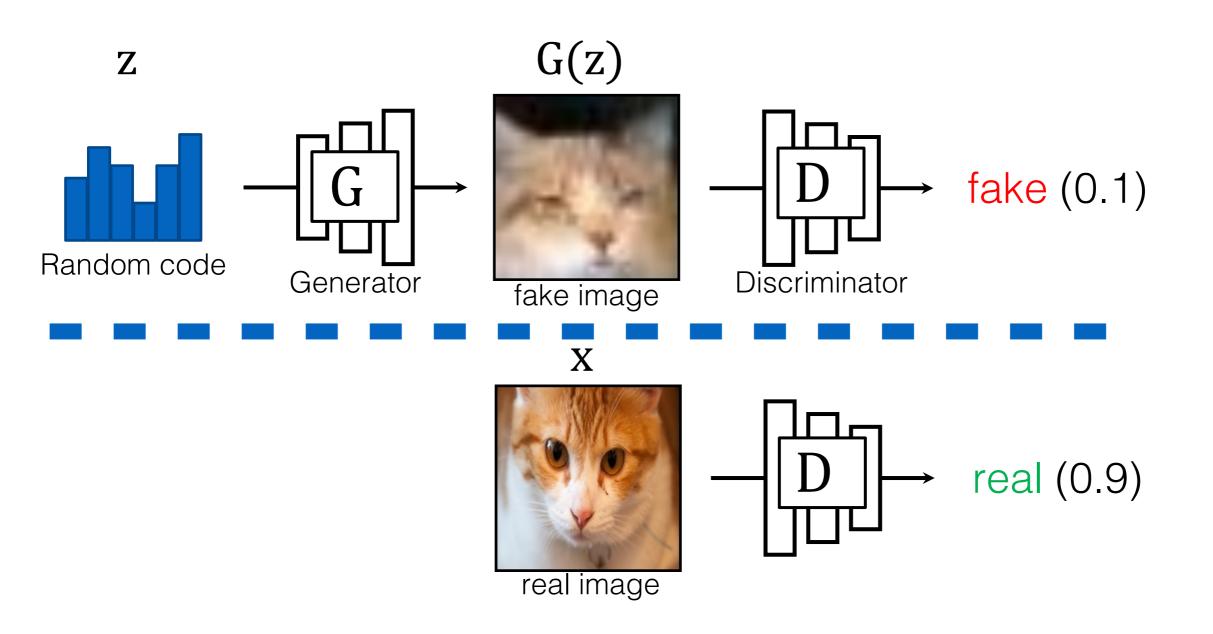
A two-player game:

- *G* tries to generate fake images that can fool *D*.
- *D* tries to detect fake images.



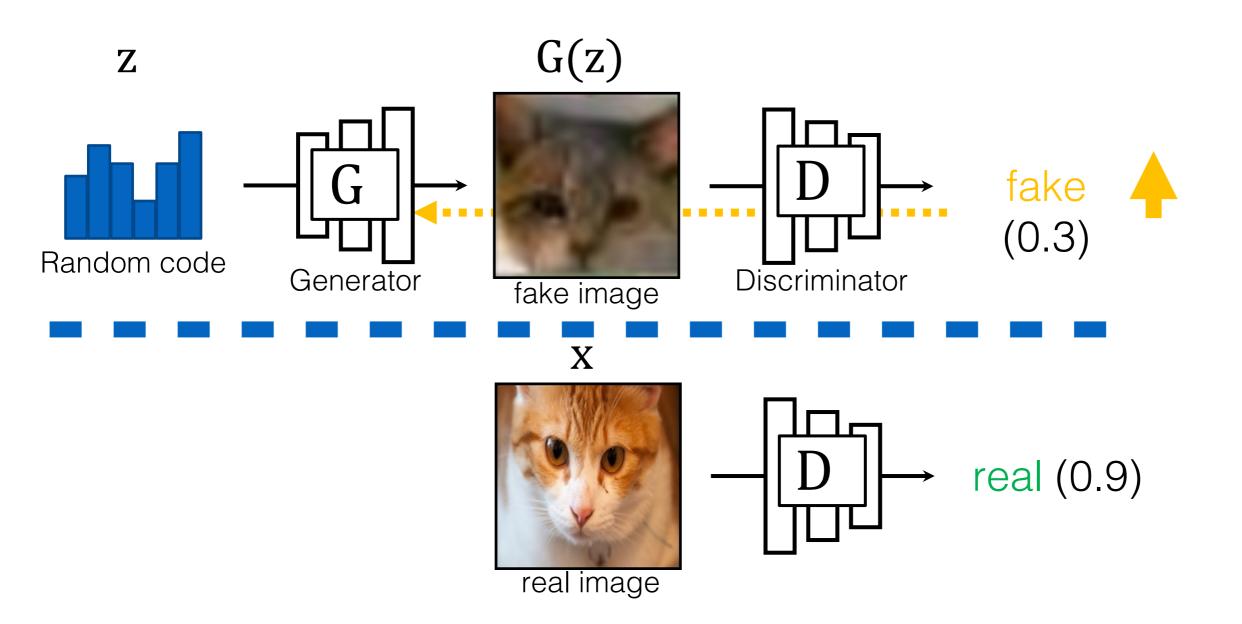
Learning objective (GANs) $\min_{\substack{G \ D}} \mathbb{E} \log(1 - D(G(z)))$

[Goodfellow et al. 2014]

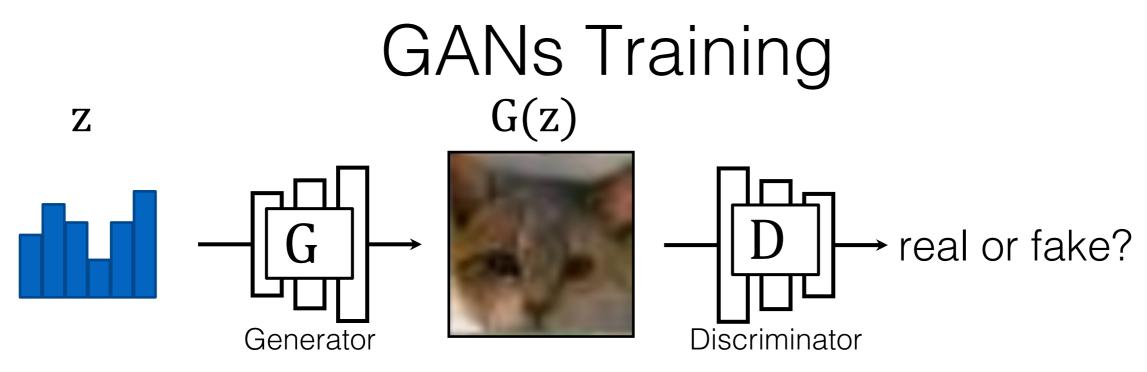


Learning objective (GANs) $\min_{G} \max_{D} \mathbb{E}[\log(1 - D(G(z)) + \log D(x)]]$

[Goodfellow et al. 2014]



Learning objective (GANs) $\min_{\substack{G \in D}} \max_{D} \mathbb{E}[\log(1 - D(G(z)) + \log D(x)]]$



G tries to synthesize fake images that fool D

D tries to identify the fakes

- Training: iterate between training D and G with backprop.
- Global optimum when G reproduces data distribution.

Thank You!

16-726, Spring 2021 https://learning-image-synthesis.github.io/